On the numerical analysis of nonlinear twofold saddle point problems
نویسنده
چکیده
We provide a general abstract theory for the solvability and Galerkin approximation of nonlinear twofold saddle point problems. In particular, a Strang error estimate containing the consistency terms arising from the approximation of the continuous operators involved is deduced. Then we apply these results to analyse a fully discrete Galerkin scheme for a twofold saddle point formulation of a nonlinear elliptic boundary value problem in divergence form. Some numerical results are also presented.
منابع مشابه
Inf-sup conditions for twofold saddle point problems
Necessary and sufficient conditions for existence and uniqueness of solutions are developed for twofold saddle point problems which arise in mixed formulations of problems in continuum mechanics. This work extends the classical saddle point theory to accommodate nonlinear constitutive relations and the twofold saddle structure. Application to problems in incompressible fluid mechanics employing...
متن کاملGeneralized iterative methods for solving double saddle point problem
In this paper, we develop some stationary iterative schemes in block forms for solving double saddle point problem. To this end, we first generalize the Jacobi iterative method and study its convergence under certain condition. Moreover, using a relaxation parameter, the weighted version of the Jacobi method together with its convergence analysis are considered. Furthermore, we extend a method...
متن کاملAn efficient modified neural network for solving nonlinear programming problems with hybrid constraints
This paper presents the optimization techniques for solving convex programming problems with hybrid constraints. According to the saddle point theorem, optimization theory, convex analysis theory, Lyapunov stability theory and LaSalleinvariance principle, a neural network model is constructed. The equilibrium point of the proposed model is proved to be equivalent to the optima...
متن کاملMatching-based preprocessing algorithms to the solution of saddle-point problems in large-scale nonconvex interior-point optimization
Interior-point methods are among the most efficient approaches for solving large-scale nonlinear programming problems. At the core of these methods, highly ill-conditioned symmetric saddle-point problems have to be solved. We present combinatorial methods to preprocess these matrices in order to establish more favorable numerical properties for the subsequent factorization. Our approach is base...
متن کاملAn efficient method for the numerical solution of Helmholtz type general two point boundary value problems in ODEs
In this article, we propose and analyze a computational method for numerical solution of general two point boundary value problems. Method is tested on problems to ensure the computational eciency. We have compared numerical results with results obtained by other method in literature. We conclude that propose method is computationally ecient and eective.
متن کامل